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Introduction

@ In 2008, De, Kurur, Saha & Saptharishi (DKSS) published a paper on
how to multiply large numbers based on ideas of Fiirer's algorithm.

@ Their procedure was implemented and compared to Schénhage-
Strassen multiplication to see how it performs in practice.

@ But first, some context. ..
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Representation of Large Numbers

— 264_

On 64-bit machines a word can hold non-negative values < W

A large number 0 < a < W" is represented as array of n words:
(ao, dly ...y a,,,l).
Each word a; is a “digit” of a in base W.

Ordinary (grade-school) multiplication of a- b: multiply each a; with
each b;. Run-time is O(n?). Function name

Can we do better?
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Multiplication: Karatsuba

o (Karatsuba 1960): cut numbers a and b in half. With the help of
some linear time operations, only 3 half-sized multiplications are
needed:

a=ag+aW", b=by+ bW"
Py = agbo, P1 = (a0 — a1)(bo — b1), Py = aib
ab = Po(1+ W") — PLW"™ + Py(W" + W?3")

@ When done recursively run-time is O(n'°823) ~ O(n'-58). Function
name KMUL.
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Multiplication: Toom-Cook

e (Toom 1963, Cook 1966): cut numbers in k > 2 pieces and perform
only 2k — 1 “small” multiplications plus some linear time operations.

o Run-time is O(n'8«(2k=1)) For k = 3, 4, 5 this is ~ O(n*°),
O(n'4%), O(n*3"). Function name for k = 3 is

@ Problem: the number of linear time operations grows quickly with k.
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Multiplication: FFT-Methods

(Strassen 1968): Cut numbers a and b in n/2 pieces each and
interpret pieces as coefficients of polynomials over R[x], R ring.

@ Evaluate polynomials at n points, multiply the sample values and
interpolate to obtain product. Propagate carries.

o If w is primitive n-th root of unity in R, evaluation and interpolation
can be done on w¥, 0 < k < n. We can use the fast Fourier transform
(FFT) with O(n - log n) steps. Function name QMUL.

@ Problem: the larger n becomes, the more precision is needed in
coefficient ring R. This limits the length of input numbers.
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Multiplication: Schonhage-Strassen

(Schénhage & Strassen 1971): Use R = Z/(2K +1)Z and w = 2 as
primitive 2K-th root of unity for the FFT.

e Multiplications by wX are just cyclic shifts, can be done in linear time.
@ Run-time is O(N - log N - log log N), coefficient length is O(v/N).
Function name SMUL.

@ Problem: the order of w is not very high. Except for /2, there are
generally no higher order roots of unity, thus FFT length is quite
limited.

@ Nevertheless, Schonhage-Strassen is the standard for multiplication of
large numbers with over ~ 150 000 bits.
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Crossover Points Between Algorithms
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Multiplication: DKSS

o (De, Kurur, Saha & Saptharishi 2008): Use polynomial quotient ring
R =Pla]/(a™ + 1) with P =Z/pZ, p=h-2M + 1 prime.

Select M = N/log? N and m = log N as powers of 2, M > m.

Let u=M/m.

From a generator of I}, calculate a primitive 2M-th root of unity

p € Pla] with p* = .

e With « as primitive 2m-th root of unity and modulus (o™ + 1)
multiplications by a* are cyclic shifts: fast!

p is high order root of unity: large FFT length.
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Multiplication: DKSS (continued)

@ A length-2M FFT can be calculated like this:
e 2M = -2m.
o Interpret the coefficients as a matrix with 2m rows and p columns.
o Do p many length-2m FFTs (on the columns) with « as root of unity.
o Perform bad multiplications on the coefficients, i.e. multiply them by
some pk.
o Do 2m many length-p FFTs (on the rows) by calling the FFT routine
recursively.
@ Multiplication in R is reduced to integer multiplication by use of
Kronecker-Schénhage substitution.
o Run-time is O(N - log N - K'°¢" V) with K = 16, coefficient length is
O(log? N). Function name DKSS_MUL.
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Multiplication: Simplified DKSS

@ In genuine DKSS, prime p is searched at run-time. To keep that time
low, p must be kept small. So, input numbers are encoded as
k-variate polynomials, k constant.

@ Since input length is limited by available memory, we can precompute
all of the required primes p and generators of [,

@ This allows to use univariate polynomials and simplifies calculation of
the root of unity p. We can use ¢ = 1 and hence P = Z/pZ.

@ For 64-bit architecture, only 6 primes need to be precomputed.
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Comparison of Execution Time
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Quotient of Run-times
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Results

For the numbers tested (up to 1.27 GB input size, total temporary
memory required 26 GB):

@ DKSS_MUL is between 27 and 36 times slower than SMUL.
@ DKSS_MUL requires == 2.3 times the temporary memory than SMUL.

@ About 80 % of run-time is spent with bad multiplications, i.e.
multiplications by p* that are not powers of a.

@ Another 9 % are spent for pointwise products.

@ Recursion did not take place. Even with the largest inputs, inner
multiplications were just 195 words long.

@ Cache effects did not slow it down, either.
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When Will DKSS Beat Schénhage-Strassen?

@ Model SMUL run-time:
T, <o-N-loghN -loglogN.
@ Model DKSS_MUL run-time:

T,<n-N-logh KN K=16.

Find fitting constants ¢ and 7 from measured run-times.

e Solve T, > T, numerically:

N > 1007 1
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Future work

Some ideas:

Exploit the sparseness of the factors in the underlying multiplication.
Estimated speed-up: factor 2.

Use variant of Kronecker-Schénhage substitution (Harvey).

Parameters p, M and m should be selected with more care.
Estimated speed-up: maybe 30 %.

Modular reduction should be sped up (Montgomery's trick or other).
Estimated speed-up: about 22 %.

Total estimated possible speed-up: factor 3.2, but even then
DKSS_MUL is at best 8.5 times slower than SMUL.
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Source Code & Thanks

@ Implementation was done in C++ and assembly language under
Windows as part of BIGNUM, my large integer library.

e Multiplication compares favorably with MPIR (GMP for Windows)
and is only 1.3 times slower on average.

@ Source code is available from http://www.wrogn.com/bignum and
licensed under LGPL.

@ Many thanks to Andreas Weber and Michael Clausen.
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